A cylindrical vessel containing a liquid is rotated about its axis so that the liquid rises at its sides as shown in the figure. The radius of vessel is 5 cm and the angular speed of rotation is ω rad s⁻¹. The difference in the height, h (in cm) of liquid at the centre of vessel and at the side will be:

[Main Sep. 02, 2020 (I)]

(a)
$$\frac{2\omega^2}{25g}$$

(b)
$$\frac{5\omega^2}{2g}$$

(c)
$$\frac{25\omega^2}{2g}$$

(d)
$$\frac{2\omega^2}{5g}$$

(c) Here,
$$\rho dr\omega^2 r = \rho g dh$$

$$\Rightarrow \omega^2 \int_0^R r dr = g \int_0^h dh$$

$$\Rightarrow \frac{\omega^2 R^2}{2} = gh$$
(Given $R = 5$ cm)

$$\therefore h = \frac{\omega^2 R^2}{2g} = \frac{25\omega^2}{2g}$$

